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We examine the spatial evolution of an instability wave excited by an external source
in a free, nearly non-dissipative, stably stratified shear flow with a small Richardson
number Ri � 1. It turns out that at the nonlinear stage of evolution even so small
a stratification modifies greatly the evolution behaviour compared with the case of a
homogeneous flow which was studied in detail by Goldstein & Hultgren (1988).

We have investigated (analytically and numerically) different stages of evolution
corresponding to different critical layer regimes, and determined the formation con-
ditions and structure of a quasi-steady nonlinear critical layer.

It is shown that the stratification influence upon the nonlinear evolution is governed
by the parameter (Pr− 1)Ri/γ2

L, where Pr is the Prandtl number and γL is the wave’s
linear growth rate (which is a measure of supercriticality), and this effect is important
only when γL < Ri 1/2, Pr 6= 1. The character of this influence radically depends on
the sign of (Pr− 1). Thus, when Pr < 1 the amplitude in the course of the evolution
varies in a limited range and either reaches saturation, when the supercriticality
is small enough or, at higher supercriticality, performs quasi-periodic oscillations,
whose structure becomes increasingly complicated with increasing γL. When Pr > 1
stratification leads to the appearance of new evolutionary stages, namely the stage
of explosive growth in the unsteady critical layer regime, and the stage of essentially
unsteady evolution in the nonlinear critical layer regime, and to a modification of the
power-law growth in the regime of a quasi-steady nonlinear critical layer.

1. Introduction
In this paper we pursue our previous investigation of the dependence of the

character of the weakly nonlinear evolution of unstable disturbances in shear flows
with large Reynolds numbers on the behaviour of a non-dissipative neutral mode
near a critical level y = yc where the flow velocity vx = u(y) coincides with the wave’s
phase velocity c, u(yc) = c, and wave–flow resonance interaction occurs.

It is well known (e.g. Drazin & Reid 1981) that the point y = yc is singular for
steady linearized and inviscid hydrodynamic equations describing a neutral mode and
in a general case the neutral mode itself is also singular† at y = yc, namely it has

† Broadly speaking, a disturbance is a multicomponent one (different velocity components,
density, etc.). Some of the components can split off and may not affect the dynamics of the others,
which will be referred to as essential. The mode will be described by a vector-function consisting only
of essential disturbance components. The neutral mode is singular if at least one of its components
is singular.
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a pole or a branch point. In some instances, however (two-dimensional disturbances
in a homogeneous incompressible medium, for example), the neutral mode is regular
when y = yc.

From a physical point of view, the singularity of the equations means that in
a neighbourhood of y = yc, a so-called critical layer (CL), one cannot neglect
simultaneously the dissipation, the disturbance evolution and the nonlinearity. Each
of these factors individually eliminates the singularity by modifying, in its own way,
the equations when |y − yc| < li, i = ν, t, N, where

lν = ν1/3, lt = |A|−1d|A|/ds, lN = Ap (1.1)

are the viscous, the unsteady (evolution) and the nonlinear scales, respectively. Here ν
is the reciprocal of the Reynolds number, A is a complex amplitude of the disturbance,
s is the evolution variable (the time or downstream coordinate), and p is a parameter
depending on the Richardson number Ri and varying from 1/2 in a homogeneous
medium to 2/3 in a medium with sufficiently large stratification (Ri ≡ Ri(yc) > 1/4).

Depending on which of these three scales (1.1) is the greatest, the corresponding
term (viscous, unsteady or nonlinear) appears in the differential operator of the
CL equations and the two others appear on the right-hand sides as disturbing
terms. In accordance with the structure of the CL equations three CL regimes
are conveniently distinguished: viscous (dissipative), unsteady and nonlinear. In the
viscous and unsteady CL regimes the left-hand sides of the CL equations are linear
and these CL regimes are also called linear. On the other hand, the nonlinearity in
the evolution equation for the amplitude of the disturbance is due to the generation
of harmonics and their nonlinear interactions which occur largely inside the CL and
are governed by the corresponding CL equations. Therefore, to each CL regime (even
to the linear one) there corresponds quite a definite type (set of types) of nonlinear
evolution equation (NEE) and, accordingly, a definite character of evolutionary
behaviour of the disturbance. Specifically, the Landau–Hopf evolution scenario (the
creation of a limiting cycle) is realized only in the viscous CL regime; the nonlinear
evolution in the unsteady CL regime is described by a NEE with a non-local
nonlinearity, the first example of which was obtained by Hickernell (1984), and
proceeds in an explosive way (Churilov & Shukhman 1988)

|A| ∝ (s0 − s)−α, α > 0; (1.2)

while the nonlinear CL regime involves a nonlinear reduction of growth rate, and the
disturbance evolution is generally ‘slow’, both in terms of amplitude growth rate (e.g.
Huerre & Scott 1980; Churilov & Shukhman 1987a; Goldstein & Hultgren 1988)

|A| ∝ sβ, β > 0, (1.3)

and in terms of the quasi-steady character of a flow inside the CL.
In the early stage of instability development the disturbance grows, in accordance

with linear theory, exponentially with growth rate γL determined by supercriticality,
and the CL is viscous (γL < ν1/3) or unsteady (γL > ν1/3). Such a growth continues
until a threshold of nonlinearity is attained, i.e. an amplitude level when nonlinear
terms in the NEE become of the same order of magnitude as linear ones. The
nonlinear stage of evolution starts here, and the growth in amplitude in this case can
speed up, slow down, cease (the Landau–Hopf scenario) or even turn back (e.g. Wu,
Lee & Cowley 1993). At the same time the CL regime is not determined for all time.
As is evident from (1.1), only lν is determined solely by flow parameters, while lt and
lN may vary during the course of the evolution; therefore, transitions from one CL
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regime to another are possible. The attainment of a threshold of nonlinearity and
transitions from one CL regime to another are events that mark boundaries between
different stages of disturbance evolution (each of which has its own type of evolution
equation and its own evolution character) and are therefore the key points of the
evolution scenario.

Churilov & Shukhman (1992) have ascertained an intimate relationship between the
evolution scenario and the neutral mode behaviour near a critical level and showed
that there exist two main nonlinear evolution scenarios for unstable disturbances.

In a general case of a singular neutral mode the threshold of nonlinearity is
low, such that for any supercriticality (γL � 1) the nonlinear stage of disturbance
development has already started in the linear (viscous or unsteady, respectively) CL
regime. A nonlinear development in the unsteady CL regime means an explosive
growth of the form (1.2) and in a general way, the unsteady scale lt grows with
amplitude so fast that it always remains larger than lN , i.e. there is no transition (up
to |A| = O(1) where weakly nonlinear theory is no longer valid) to the nonlinear
CL regime with an inherent ‘slow’ law of growth of the form (1.3). The amplitude
of disturbances with a smaller supercriticality (γL < ν1/3), that ‘start’ in the viscous
CL regime, varies in a limited range in the same CL regime when the nonlinearity
has a stabilizing character or grows explosively with the subsequent transition to the
unsteady CL regime when it has a destabilizing character. All disturbances with a
singular neutral mode studied so far, namely two-dimensional in stratified (Churilov
& Shukhman 1987b, 1988) or compressible (Goldstein & Leib 1989; Shukhman 1991;
Leib 1991) flows and three-dimensional in a homogeneous medium (Goldstein &
Choi 1989; Wu et al. 1993; Wu 1993a,b; Churilov & Shukhman 1994; Wu & Cowley
1995), evolve according to this (‘fast’) scenario.

In those degenerate cases when the neutral mode is regular (two-dimensional
disturbances in a homogeneous incompressible medium), the evolution is ‘slow’: the
nonlinearity (when γL > ν) turns out to be non-competitive in the viscous and
unsteady CL regimes, and the exponential growth ends in the transition to the
nonlinear CL regime when A ∼ max(ν2/3, γ2

L), and the subsequent growth proceeds
according to (1.3) with β = 2/3 (Huerre & Scott 1980; Churilov & Shukhman 1987a;
Shukhman 1989; Hultgren 1992). This scenario with full details of the transition
to the nonlinear CL regime at different values of supercriticality was investigated
most thoroughly by Goldstein & Hultgren (1988, hereinafter referred to as G&H) by
considering an example of a free mixing layer.

These are the two main weakly nonlinear scenarios of instability development in
shear flows: ‘fast’ ending in an explosive growth of amplitude in the unsteady CL
regime up to the boundary of the validity range of the theory (A = O(1)), and ‘slow’
with the transition to the nonlinear CL regime. Note that even a linear analysis
(singularity or regularity of the neutral mode) shows which scenario is realized, and
complicated and unwieldy nonlinear calculations make it possible only to specify the
details (the level of the threshold of nonlinearity as a function of γL, the value of the
index α in (1.2) (or β in (1.3)), etc.).

The difference between these scenarios, as is easy to see, is very large, and the
question naturally arises: what scenarios are between them, in intermediate cases? To
answer this question, it seems necessary to find and study the cases when the neutral
mode is ‘weakly singular’, which can manifest itself, for example, as an ‘almost splitting
off’ of the singular part of the disturbance and its weak influence upon the regular
part. One such problem was considered by Churilov & Shukhman (1995, hereinafter
referred to as C&S95), and another will be treated in the present paper.
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C&S95 was devoted to the study of the streamwise development of ‘weakly three-
dimensional’ disturbances in the form of a monochromatic running wave in a ho-
mogeneous incompressible medium. In this problem the intensity of the effect of
the singular component on the regular component is governed by the parameter
δ = (kz/kx)

2, where kx and kz are the wave vector components, and as δ varies from
δ = 0 to δ = O(1), the transition from two-dimensional disturbances (G&H, ‘slow’
evolution) to three-dimensional ones (Churilov & Shukhman 1994, ‘fast’ evolution)
occurs. The explosive growth stage inherent in fast evolution scenarios appears only at
a sufficiently large δ in a limited range of variation in supercriticality (ν1/3 < γL < δ).
When δ � 1 this stage is only intermediate asymptotics: because of the smallness of
δ the unsteady scale lt grows insufficiently fast, so that when A = O(δ2) it is overtaken
by lN , and the transition to the nonlinear CL regime occurs, i.e. to the slow evolution
accoridng to (1.3).

Physically, the transition to the nonlinear CL regime means that the movement of
liquid particles trapped by the wave becomes the fastest process in the CL. In all
cases studied heretofore, the mixing of liquid particles inside the cat’s eyes caused by
this movement ‘grinds’ down the vorticity gradient which is the cause of an instability
of shear flows (for a detailed discussion see, for example, C&S95, pp. 60–61). As a
result the disturbance evolution is decelerated abruptly and becomes quasi-steady, no
matter how violent (even explosive, see C&S95) it was before.

We devoted a separate paper (Churilov & Shukhman 1996, hereinafter referred to
as C&S96) to the study of the quasi-steady evolution of unstable disturbances and the
influence of different factors upon it, including a very weak (Ri < ν2/3) stratification.
By analysing the nonlinear evolution equations obtained for this problem, we have
seen that at the Prandtl number Pr < 1, when density disturbances diffuse faster than
velocity disturbances, there arises a factor which intervenes in the mixing process
of liquid particles trapped by the wave and, at a stronger stratification (Ri > ν2/3),
can hamper the establishment of the quasi-steady evolution of disturbances after
transition into the nonlinear CL regime.

In this paper we investigate the spatial evolution of two-dimensional unstable
disturbances in a shear flow with moderately weak stratification (ν2/3 � Ri � 1). It
has several aspects of interest.

In the first place, a stratification (let it be small) is inevitably present in the real
medium and often plays an important role (e.g. Turner 1973; Tritton & Davies 1981).
Therefore, ascertaining the validity range of models with a homogeneous medium for
describing various phenomena (e.g. instability development which leads to turbulence
in shear flows) is of much current interest and importance.

Secondly, the neutral mode is also weakly singular here (the governing parameter
δ = Ri 1/2 ≡ [Ri(yc)]

1/2), but the interaction mechanism for the singular (density
perturbation) and the regular (velocity perturbation) components is totally different
from the case of weakly three-dimensional disturbances. This latter factor, as the
analysis shows, is no bar to the transition to the nonlinear CL regime, but it leads
to a previously unknown type of evolution behaviour: an unsteady development of a
disturbance in the nonlinear CL regime in a reasonably wide (when Ri� ν2/3) range
of amplitudes and growth rates

(νRi)2/5 < |A| < Ri , |A| < γ2
L , (1.4)

which is possible to investigate only by numerical methods.
It turns out that if the Prandtl number Pr > 1 the disturbance ultimately ‘overcomes’

this gap and continues to grow further in a quasi-steady way according to (1.3). For
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this quasi-steady stage we obtained an analytic (in addition to numerical) solution
taking into account also corrections for a weak unsteadiness. On the one hand, it
serves as a check of the numerical solution and, on the other, provides a significant
amount of additional information about the nonlinear CL properties in a stratified
medium. In particular, the analytic solution indicates that the quasi-steady evolution
of sufficiently supercritical disturbances (γL > ν1/3) is impossible in the nonlinear
CL regime when Pr < 1 and stratification is strong enough (Ri > γ2

L). Indeed, the
numerical analysis shows that in this case the disturbance gets trapped in the gap
(1.4), and its amplitude oscillates in a limited range.

Thirdly, the very fact of nonlinear CL formation in a (weakly) stratified medium
as a result of the instability development is remarkable and interesting since it is well
known (Churilov & Shukhman 1988) that with a finite stratification (Ri ≈ 1/4) the
evolution is fast and the nonlinear CL regime is not realized. It might be well to
point out that solutions for a steady nonlinear CL were constructed relatively long
ago. Kelly & Maslowe (1970) pioneered a treatment of this problem as applied to the
case of a weak stratification, and Haberman (1973) made a correct matching of the
solution across the cat’s eye boundary based on the same principles as in his earlier
work (Haberman 1972) devoted to a nonlinear CL in a homogeneous medium.

This paper is organized as follows. In § 2 we give the statement of the problem,
the scaling and a brief derivation of the basic equations. The evolution in the viscous
and unsteady CL regimes is considered in § 3. In § 4 an analytic study is made of
the nonlinear quasi-steady CL regime and its boundaries are found. The procedure
and results of a numerical calculation are discussed in § 5. Finally, § 6 is devoted to
a discussion of results obtained. The Appendix includes the derivation of nonlinear
evolution equations for the quasi-steady nonlinear CL regime with due regard for
unsteadiness in outer diffusion layers.

2. Problem statement and basic equations
Consider a plane-parallel shear flow of a stratified (ρ = ρ0(y)) incompressible fluid

along the x-axis, vx = u(y) > 0, with a monotonic velocity profile (it is assumed that
u′c(y) > 0 because the resulting evolution equations acutally involve only u′c

2) and a
large Reynolds number. Stratification is taken to be stable, and the density variation
scale is considered to be of the same order or larger than the velocity variation
scale d. The Richardson number is small everywhere, Ri = −gρ′0/(ρ0u

′2) � 1/4, and
stratification is taken into account as a correction. Such a flow has a wide spectrum of
unstable modes and applying the weakly nonlinear theory (which treats a nearly stable
wave rather than the fastest growing one) needs justification. There are several ways
to do this (e.g. G&H; Hultgren 1992; Churilov & Shukhman 1994). We will assume
that a perturbation is produced by an external source which sets an appropriate
frequence ω somewhat smaller than a critical frequency ωcr (i.e. the neutral mode
frequency): ωcr − ω � ωcr . We suppose also that the amplitude of a perturbation
generated in such a way is large enough to neglect more unstable disturbances that
could arise from (very-low-amplitude) noise and small enough to obey the linear
evolution equation near the source. The selected perturbation increases downstream,
and at some distance its evolution becomes nonlinear; this is the process we are
studying. A typical stability diagram and the mode selected are shown in figure 1.

Since the stratification is weak the critical level y = yc coincides, in the first
approximation, with the inflection point u′′c ≡ u′′(yc) = 0. By taking |ρ′cd|, d and
2d/∆u, to be the units of density, length and time, respectively, where ρ′c ≡ ρ′0(yc) and



202 I. G. Shukhman and S. M. Churilov
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eJ

Figure 1. A typical curve of neutral stability on the (Ri, ω)-plane. The black circle corresponds to
the selected weakly unstable mode. (The neutral curve for Drazin’s (1958) model is shown for which
u(y) = Ū + tanh(y), r(y) = 1, k = ω/Ū, Ri = k2(1− k2), c = Ū, ωcr = Ū.)

∆u is the velocity difference across the shear layer, we write the input equations in
the Boussinesq approximation in a dimensionless form:

∂

∂t
∆ψ + u

∂

∂x
∆ψ − u′′ ∂ψ

∂x
−N2 ∂ρ

∂x
+ {∆ψ, ψ} = ν∆2ψ,

∂ρ

∂t
+ u

∂ρ

∂x
+ r(y)

∂ψ

∂x
+ {ρ, ψ} =

ν

Pr
∆ρ,

 (2.1)

where ψ and ρ are perturbations of streamfunction and density respectively, N2 =
−gρ′c/ρ0 ≈ const, r(y) = ρ′0(y)/ρ′c, Pr = ν/κ = const = O(1) is the Prandtl number,
ν is kinematic viscosity (inverse Reynolds number), κ is the diffusion coefficient for
density changes, {a, b} = axby − aybx and ∆ denotes the Laplacian.

It is easy to see that the neutral mode does indeed consists of regular (ψ) and
singular (ρ) – at a critical level – components split when Ri = 0 and weakly coupled
when Ri� 1/4. Therefore, the solution outside the CL (i.e. of the outer problem) in
the first approximation is

ψ = 2εBg(y) cos θ, ρ = −r(y)ψ

u− c ; θ = kx− ωt+Θ, (2.2)

where g(y) is the eigenfunction of the neutral mode of the Rayleigh equation

g′′ −
(

u′′

u− c + k2

)
g = 0, g → 0 as y → ±∞,

g = 1 + α1(y − yc) + α2(y − yc)2 + · · · , y → yc; α2 =
(
u′′′c /u

′
c + k2

)
/2,

and Θ and k = ωcr/c are its phase and wavenumber respectively and ε � 1 is a
small parameter characterizing the disturbance amplitude; the coefficient α1 is to be
determined by solving the boundary-value problem for g(y).

To be able, in terms of a unified approach, to study the three CL regimes: viscous,
unsteady and nonlinear, it is assumed that the respective scales

lν ∼ ν1/3, lt ∼ B−1dB/dx, lN ∼ ε1/2
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are of the same order of magnitude, and we introduce

ξ = ε1/2x, y − yc = ε1/2Y , ω = ωcr + ε1/2Ω, ν = ηε3/2 . (2.3)

The amplitude B and phase Θ depend on the evolution variable ξ.
Following the lead of a number of earlier articles, we will employ matched asymp-

totic expansions for constructing the solution of (2.1): first we seek the solutions
outside and inside the CL in the form of power series in ε, and they are then matched
in each order. Matching yields nonlinear evolution equations as compatibility condi-
tions. Let us take a brief look at some of the main points only.

In the outer solution it is necessary to take into account, in addition to the neutral
mode (2.2), corrections for the supercriticality and evolution (O

(
ε3/2
)
) and corrections

for stratification (O(Ri ε)). With the chosen scaling (2.3), we allow for any type of CL,
including the nonlinear one, so that inside it all disturbance harmonics (except for the
fundamental one) must be of the same order of magnitude. Because of degeneracy
of this problem (u′′c = 0) this order is O(ε2) (rather than O(ε3/2) as in the case u′′c 6= 0
when even g(y) is singular, see Kelly & Maslowe 1970; Haberman 1973). Therefore
for contributions due to stratification to be competitive, we must put Ri = O(ε) (cf.
scaling Ri = O(ε1/2) in cited papers). We define

Ri (yc) = εJ, J = O(1) . (2.4)

It is pertinent to note that, with such a scaling, stratification modifies the linear
properties of disturbances so little (a displacement of the stability boundary ∆ωcr =
O(Ri) = O(ε), while the supercriticality is O

(
ε1/2
)
) that this may be neglected.

The inner (as y → yc) asymptotic expansion of the outer solution has the form

ψ = 2εBC + 2ε3/2α1BCY + ε2
[(

u′′′c
u′c

+ k2

)
BCY

2 + 2
u′′′c

ku′c
2
(ΩBC − cḂS)Y ln |ε1/2Y |

+2JBC ln |ε1/2Y |+ a± + b±Y

]
+ · · · , (2.5)

ρ = −2ε1/2(BC/u
′
c)Y

−1 + · · · , BC ≡ B cos θ, BS ≡ B sin θ; ḂC,S ≡ d(BC,S)/dξ .

The coefficients b± satisfy the modified solvability condition (MSC)

b+− b− = −(2/k)(ΩBC− cḂS)I1− 4kI2ḂS; I1 =

∫ ∞
−∞
− dy

u′′g2

(u− c)2
, I2 =

∫ ∞
−∞
g2dy, (2.6)

where
∫
− stands for a Cauchy principal value. Matching to the solution inside the CL

makes it possible to determine a± and b± which – upon substitition into MSC (2.6)
– gives the nonlinear evolution equation.

The inner solution has to be matched to (2.5) and therefore it is sought in the form
of an expansion in ε1/2:

ψ = ε
(
Ψ (1) + ε1/2Ψ (2) + εΨ (3) + · · ·

)
, ρ = ε1/2P (1) + · · · . (2.7)

The first two iterations of Ψ , in view of the matching to (2.5), are calculated in a
straightforward way: Ψ (1) = 2B cos θ, Ψ (2) = 2α1BY cos θ. The full O(ε) streamfunc-
tion ψ is u′cY

2/2 + 2B cos θ, which means that in the leading order streamlines have
the characteristic form of cat’s eyes.

The third iteration for ψ and the first for ρ give the desired equations. Introducing
ζ = Ψ

(3)
Y Y − 2B

(
u′′′c /u

′
c + k2

)
cos θ, we write them in the form

Lζ = Ju′c
2
P (1)
x − 2(u′′′c /u

′
c)
(
ΩBS + cḂC

)
, L̃P (1) = 2kBS, (2.8)
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where

L = c
∂

∂ξ
+
(
u′cY − Ω/k

) ∂
∂x

+ 2kB sin θ
∂

∂Y
− η ∂2

∂Y 2
,

L̃ = c
∂

∂ξ
+
(
u′cY − Ω/k

) ∂
∂x

+ 2kB sin θ
∂

∂Y
− η

Pr

∂2

∂Y 2
=L+

Pr− 1

Pr
η
∂2

∂Y 2
.

Equations (2.8) (cf. (2.12) and (2.8) in C&S95) are the basic equations defining the
solution inside the CL and its contribution to MSC (2.6). It is convenient to omit the
supercript of P (1) and represent the vorticity ζ as the sum of the stratified (ζs) and
the unstratified (ζh) parts: ζ = ζs + ζh. We obtain

L̃P = 2kB sin θ , (2.9a)

Lζs = Ju′c
2
Px , (2.9b)

Lζh = −2
u′′′c
u′c

[(
Ω − cdΘ

dξ

)
B sin θ + c

dB

dξ
cos θ

]
, (2.9c)

MSC (2.6) is conveniently written as

B

k

(
I0

dΘ

dξ
− ΩI1

)
=

∫ ∞
−∞
− dY 〈ζ cos θ〉 ≡

∫ ∞
−∞
− dY 〈 (ζs + ζh) cos θ〉 , (2.10a)

I0

k

dB

dξ
=

∫ ∞
−∞
− dY 〈ζ sin θ〉 ≡

∫ ∞
−∞
− dY 〈 (ζs + ζh) sin θ〉 , (2.10b)

where

∫ ∞
−∞
− dY (· · ·) = lim

Z→∞

∫ Z

−Z
dY (· · ·) , 〈· · ·〉 =

1

2π

∫ 2π

0

dθ(· · ·) , I0 = cI1 − 2k2I2 .

The comparison of equations (2.9) and (2.10) with equations (2.13), (2.15) from
C&S95 shows that the problems considered in both cases are closely related. Note-
worthy are two main differences of equations (2.9a–c) from similar equations (2.13a–c)
from C&S95.

In the first place, in a stratified medium two dissipation mechanisms operate on
equal terms: diffusion of momentum (viscosity) and diffusion of density, and in the
general case (Pr 6= 1) diffusion rates of the regular (ζ) and the singular (P ) disturbance
components are different, unlike C&S95 where only the viscosity is at work and the
diffusion rates are the same. From (2.9a, b) we obtain

LG = −Pr− 1

Pr
ηJu′cPY Y Y , where G = ζs + Ju′cPY . (2.11)

Since, as is easy to see,
∫

dY 〈ζs (sin θ, cos θ)〉 =
∫

dY 〈G (sin θ, cos θ)〉, equation (2.11)
makes degeneracy evident, which manifested itself also in earlier research (for example,
Churilov & Shukhman 1987b; 1988): with the diffusion rates of momentum and
density being the same (Pr = 1), the main nonlinear contribution to the evolution
equations (the right-hand sides of MSC (2.10a,b)), caused by stratification, vanishes.

Secondly, the right-hand side of (2.9b) involves the derivative with respect to x, but
not with respect to ξ, as in C&S95. Because of this, in the nonlinear CL regime the
interaction of the regular and the singular components of a disturbance is not driven
out into outer diffusive layers, as in C&S95, and the result of this interaction has a
different parity (see §4 and the Appendix).
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3. Evolution in the viscous and unsteady CL regimes
With scaling (2.3), values of B � 1 correspond to the viscous and unsteady

CL regimes. The solution of the inner problem (2.9a,c), (2.11) in these regimes is
constructed in the form of an expansion in powers of B, and it is convenient to pass
to the complex amplitude Â = B exp(iΘ).

It is well known (e.g. Churilov & Shukhman 1987a; C&S95) that in the case of two-
dimensional disturbances the ‘unstratified’ nonlinearity in the viscous and unsteady
CL regimes is non-competitive except for a narrow region of small supercriticalities
(γL < ν). Therefore, it will suffice here only to have a linear (in B) contribution of
ζh to the right-hand sides of MSC (2.10a,b) which is equivalent to an appropriate
indentation (from below when u′c > 0) of the point y = yc in the integral I1.

Thus, it will suffice to restrict ourselves to solving equations (2.9a), (2.11). As a
result of conventional calculations (e.g. Wu et al. 1993; Churilov & Shukhman 1994)
we obtain

i

k
Ĩ0

dÂ

dξ
+
Ω

k
Ĩ1Â

= 2πJη
Pr− 1

Pr

k7u′c
5

c8

∫ ∞
0

dξ1

∫ ∞
0

dξ2R(ξ1, ξ2; Pr)Â(ξ−ξ1)Â(ξ−ξ1 − ξ2)Â(ξ−2ξ1−ξ2).

(3.1)

Here

R(ξ1, ξ2; Pr) = ξ2
1

{
exp

[
−αξ2

1

(
2

3
ξ1 + ξ2

)]∫ ξ1

0

dξ3ξ
3
3 exp

(
α

Pr− 1

3Pr
ξ3

3

)
+ exp

[
− α

Pr
ξ2

1

(
2

3
ξ1 + ξ2

)]∫ ξ1

0

dξ3ξ
3
3 exp

(
−αPr− 1

3Pr
ξ3

3

)
+ξ3

1 exp

[
−αξ2

1

(
Pr + 1

3Pr
ξ1 + ξ2

)] ∫ ξ2

0

dξ3 exp

(
α

Pr− 1

Pr
ξ2

1ξ3

)}
, (3.2)

where α = η k2u′c
2
/c3, Ĩ0 = cĨ1 − 2k2I2 and the tilde over I1 means that the integral

is evaluated with the indentation of y = yc from below.
This is just the evolution equation describing the development of disturbances in

the viscous and unsteady CL regimes, including the transition region between them
where lt = O(lν). In limiting cases (lt � lν and lt � lν) it becomes significantly simpler.

3.1. Viscous CL regime (lν � lt)

This case corresponds to the limit α → ∞. Because of a rapid exponential decrease,
the main contribution to the integral on the right-hand side of (3.2) is made by small
delays. The main term of the asymptotic expansion does not go to zero and therefore
the main nonlinearity is local in ξ (unlike C&S95, equation (4.1); see also Churilov
& Shukhman 1994, §4.2.1):

i

k
Ĩ0

dÂ

dξ
+
Ω

k
Ĩ1Â = −4a4(Pr)(Pr− 1)J

k5u′c
3

c5α5/3
|Â|2Â; (3.3)

the non-local nonlinearity, however, is of O(α−2). Coefficient a4(Pr) < 0 and its explicit
form is given in C&S96.

Note that the right-hand side of (3.3) is real, and its sign is determined by the sign of
(Pr−1). Since (see (2.6)) Ĩ1 = I1 + iπu′′′c /u

′
c
2 and u′′′c < 0, the real part of the coefficient
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Figure 2. Evolution diagram in the viscous and unsteady CL regimes (before the transition

into the nonlinear CL regime). Heavy lines show nonlinearity thresholds: 1, A1 =
(
γLν

5/3/Ri
)1/2

;

2, A2 =
(
γ9
L/(νRi)

)1/2
; 3, A3 = γ2

L. The arrows show the various stages of evolution:

−→ A ∼ exp(γLξ);
α

=⇒ A ∼ (ξ0 − ξ)−α. The unsteady CL region is shaded.

at dÂ/dξ is positive. By extracting the supercriticality-induced correction to the wave

number, Â = Ã exp (iKξ), K = Re(Ĩ1/Ĩ0)Ω, and returning to the ‘physical’ variables,
A = εÃ, ν = ε3/2η, Ri = εJ, x = ε1/2ξ, we write the evolution equation (3.3) in a
brief form:

dA

dx
= γLA+ d1

(Pr− 1)Ri

ν5/3
|A|2A, (3.4)

where γL = −ε1/2Im(Ĩ1/Ĩ0)Ω, d1 = O(1), Re(d1) > 0. Thus, as would be expected (see
Churilov & Shukhman 1987), the nonlinearity has a stabilizing effect when Pr < 1
and a destabilizing effect when Pr > 1. The nonlinearity becomes competitive when

A ∼ A1 = O
(
γ

1/2
L Ri−1/2ν5/6

)
(3.5)

(curve 1 in figure 2). The threshold of nonlinearity (3.5) lies below the formal boundary
of the nonlinear CL (A ∼ ν2/3) throughout the region of the viscous CL (γL < ν1/3) if
stratification is strong enough,

Ri > ν2/3. (3.6)

The case of weaker stratification was studied in our earlier publication C&S96;
therefore, the inequality (3.6) will be taken to be satisfied in what follows.

The evolution behaviour after the attainment of the threshold of nonlinearity (3.5)
depends on the Prandtl number: when Pr < 1 the disturbance is stabilized on this
level, and when Pr > 1 it continues to increase further, but now in an explosive way,
however, as

|A| ∼
[
ν−5/3Ri (x0 − x)

]−1/2
(3.7)

(the bottom broad arrow in figure 2). Now the unsteady scale lt increases together
with the amplitude, lt ∼ |A|2Ri/ν5/3, and when |A| = O(ν/Ri 1/2) � ν2/3 it equals the
viscous scale lν ∼ ν1/3: the transition into the unsteady CL regime occurs (see the
next subsection).
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3.2. Unsteady CL regime (lt � lν)

This case corresponds to the limit α→ 0 and NEE (3.2) takes the form

i

k
Ĩ0

dÂ

dξ
+
Ω

k
Ĩ1Â

= πηJ
Pr− 1

Pr

k7u′c
5

c8

∫ ∞
0

dζ ζ7

∫ 1

0

dσ σ5(2− σ)Â(ξ − ζ)Â(ξ − σζ)Â (ξ − (1 + σ)ζ) , (3.8)

usual for evolution equations in the unsteady CL regime (e.g. Hickernell 1984;
Churilov & Shukhman 1988). Let (3.8) be also represented in brief form in terms of
physical variables (cf. (4.3) from C&S95)

dA

dx
= γLA+d2Ri (Pr−1)ν e−iχ

∫ ∞
0

ds s7
∫ 1

0

dσ σ5(2−σ)A(x−s)A(x−σs)A(x−(1+σ)s) , (3.9)

where 0 < d2 = O(1), |χ| < π/2. The threshold of nonlinearity

A ∼ A2 = O
(
γ

9/2
L ν−1/2Ri−1/2

)
(3.10)

(curve 2 in figure 2) intersects the formal boundary of the nonlinear CL (|A| ∼ γ2
L)

when

γL ∼ (νRi)1/5. (3.11)

With a greater supercriticality, the nonlinearity in the unsteady CL regime is
non-competitive, and exponential growth of unstable disturbances terminates when
A ∼ O

(
γ2
L

)
with the transition into the nonlinear CL regime. If, however, ν1/3 < γL <

(νRi)1/5, then after reaching the threshold of nonlinearity (3.10), exponential growth
is replaced by an explosive one (the right-hand broad arrow in figure 2), no matter
what the sign of (Pr− 1). The asymptotic law of growth

A ∼ (νRi)−1/2(x1 − x)−9/2+iβ, β = β(ϕ), ϕ = χ+ (1− sign(Pr− 1))π/2 (3.12)

assumes (when ϕ 6= 0) an explosive growth not only of the amplitude but also the
phase Θ.

Because of the ambiguity of the function β(ϕ) (e.g. Shukhman 1991), it is unclear
a priori precisely what branch will be reached by the solution of (3.9) when x →
x1; the value of x1 is also determined numerically only. For a numerical solution,
equation (3.9) is conveniently brought to a ‘universal’ form. When x → −∞ the
disturbance grows exponentially, A = A0 exp(γLx). We put A(x) = A0a(x) exp (γLx),
a(x)→ 1 when x→ −∞, and introduce a new evolution variable T = T0 exp (2γLx),
T0 = d2|Pr− 1|νRi(2γL)−9|A0|2. From (3.9) we obtain the equation

da

dT
= e−iϕ

∫ ∞
0

dt t7e−t
∫ 1

0

dσ
σ5(2− σ)

(1 + σ)8
a
(
T e−t/(1+σ)

)
a
(
T e−σt/(1+σ)

)
a
(
T e−t

)
, a(0) = 1,

(3.13)
in which only the phase ϕ is dependent on flow structure. For the flow u = 1 + tanh y
we have χ = arctan(π/2) − π/2 ≈ −0.1805π, i.e. ϕ = −0.1805π for Pr > 1 and
ϕ = 0.8195π for Pr < 1.

The results obtained by solving equation (3.13) are presented in figures 3 and 4. As
in C&S95, an explosive growth of (3.12) is not a final stage of the weakly nonlinear
evolution of disturbances: because of the weakness of the stratification the unsteady
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Figure 3. Wave amplitude vs. logarithmic time T in the unsteady CL regime for two values of the
parameter ϕ: ϕ = arctan(π/2)∓π/2 corresponding to sign(Pr−1) = ±1 in the model u = 1+tanh y.

scale lt ∼
(
|A|2νRi

)1/9
increases insufficiently fast with increasing amplitude and when

A ∼ (νRi)2/5 (3.14)

the nonlinear scale lN ∼ |A|1/2 overtakes it: the transition into the nonlinear CL
regime occurs (see figure 2). Note that when γL < (νRi)1/5 this transition proceeds
from the explosive growth stage in the unsteady CL regime†.

To conclude this Section, one remark is in order. We have analysed only limiting
cases of NEE (3.1). Therefore, near boundaries between viscous and unsteady CL
regions in amplitude–growth rate space the results obtained are valid qualitatively
only. For a quantitative description of the evolution, it is necessary to solve the full
equation (3.1) as has been done for some other problems (e.g. Goldstein & Leib
1989; Leib 1991; Wu & Cowley 1995). Not only do such solutions serve to confirm
results of asymptotic analysis, but they make it possible to determine more precisely
the boundary in the supercriticality between the viscous and the unsteady types
of evolution (which is of particular interest at Pr < 1 when the saturation of an
instability at the level (3.5) is next to a relatively complicated development with an
explosive asymptotic growth, see figures 3 and 4).

Nevertheless, we shall restrict our consideration to an asymptotic analysis and con-
centrate on a more interesting (and essential in this problem) numerical investigation
of the transition to the nonlinear CL regime (§ 5).

4. Quasi-steady evolution in the nonlinear CL regime
A quasi-steady state in the nonlinear CL regime means smallness of the evolution

term in the operators L and L̃ compared not only with the nonlinear term but also
with the viscous term, which corresponds to the inequalities

lt � l3ν /l
2
N � lN or Γ � η/B � B1/2; Γ =

∣∣B−1dB/dξ
∣∣ . (4.1)

† It will be recalled that if γL < ν1/3 the unsteady CL regime is realized only when Pr > 1; when
Pr < 1 the amplitude ceases to increase in the viscous CL regime at the level (3.5).
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Figure 4. Evolution path of the disturbance: log|a(T )| is plotted in the radial direction, the polar
angle is equal to arg[a(T )] .

On the other hand, in outer (|y − yc| = O(1)) flow regions the dissipation terms are
small compared with the unsteady ones (γL � ν). Therefore, the solution inside the
CL has to be matched to (2.5) not directly but through solutions in so-called outer
diffusive layers (ODL), (e.g. C&S95) having a scale

lODL ∼ (εη/Γ )1/2 ∼ (l3ν /lt)
1/2 ,

where dissipation and unsteady terms are of the same order. The left-hand side of
each of the inequalities (4.1) does mean that ODLs (together with unsteady processes
occurring in them) lie at the far periphery of the CL: lODL � lN .

Equations (2.9a–c) are conveniently written in terms of the variables θ, τ = ξ/c and
z = (u′c/2B)1/2(Y − Yc(τ)), where Yc(τ) = (Ω − Θτ)/(ku

′
c) is the displacement of the

critical level of the neutral mode and subscript τ denotes the derivative in τ. We
obtain

M
(
λ

Pr

)
P = − 1

k(2Bu′c)
1/2
TP +

(
2B

u′c

)1/2

sin θ, (4.2a)

M(λ)ζs = − 1

k(2Bu′c)
1/2
Tζs + J

(
u′c

3

2B

)1/2

Pθ, (4.2b)
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M(λ)ζh = − 1

k(2Bu′c)
1/2
Tζh −

2u′′′c
k(2Bu′c

3)1/2
[(Ω −Θτ)B sin θ + Bτ cos θ] , (4.2c)

where

M(µ) = z
∂

∂θ
+ sin θ

∂

∂z
− µ ∂

2

∂z2
, T =

∂

∂τ
+

Θττ

k(2Bu′c)
1/2

∂

∂z
− Bτ

2B
z
∂

∂z
, λ =

η(u′c)
1/2

k(2B)3/2
.

In the first approximation unsteady terms (terms withT on the right-hand sides of
(4.2a–c)) may be neglected. It is convenient to introduce the functions (e.g. C&S96)
g1(λ; z, θ), g2(λ; z, θ), g4(λ,Pr; z, θ), satisfying the equations

M(λ)g1 = −2 sin θ , M(λ)g2 = −2 cos θ , M(λ)g4 = −∂g1

(
λ/Pr; z, θ

)
/∂θ ; (4.3)

∂gi/∂z → 0 as z → ±∞, i = 1, 2, 4,

and represent the solution of (4.2a–c) in terms of them:

P = −
(
B/2u′c

)1/2
g1

(
λ/Pr; z, θ

)
+ · · · , ζs = Ju′c g4(λ,Pr; z, θ)/2 + · · · ,

ζh =
u′′′c

k(2Bu′c
3)1/2

[(Ω −Θτ)Bg1(λ; z, θ) + Bτg2(λ; z, θ)] + · · · .

 (4.4)

Dots denote contributions made by unsteady terms. In the limit λ � 1 dictated by
the inequalities (4.1), the spatial structure of these functions is written in Appendix
A of C&S96. In the limiting case of vanishing viscosity the functions g1 and g2 are
continuous on the cat’s eye boundaries κ ≡ z2/2 + cos θ = 1, while g4 undergoes a
discontinuity here:

g4(1 + 0)− g4(1− 0) ≡ [g4] = π
{
|sin(θ/2)| − (π/4)(1− 1/Pr)

}
. (4.5)

Continuity of g1 means continuity of the density P on the cat’s eye boundary, and
the jump of g4 implies a jump of vorticity ζ†

[ζ] = (Ju′c/2)[g4] .

This jump is caused entirely by stratification because (as was shown by Haberman
as early as 1972) in a homogeneous flow the vorticity on the cat’s eye boundary is
continuous. It is natural to call it the baroclinic jump of vorticity. Note that in the
nonlinear quasi-steady CL regime the jump (in the first approximation) is independent
of the wave’s amplitude and is determined entirely by the Richardson number.

Contributions to the right-hand sides of MSCs (2.10a,b) are expressed in terms of
the functions

Φ1(λ) =

∫ ∞
−∞
− dz〈g1 sin θ〉, Φ2(λ) =

∫ ∞
−∞
− dz〈g2 cos θ〉, Φ4(λ,Pr) =

∫ ∞
−∞
− dz〈g4 cos θ〉

as∫ ∞
−∞
− dY 〈ζh sin θ〉 =

u′′′c

ku′c
2
Φ1(λ)

(
Ω − cdΘ

dξ

)
B,

∫ ∞
−∞
− dY 〈ζh cos θ〉 =

u′′′c

ku′c
2
Φ2(λ)c

dB

dξ
,∫ ∞

−∞
− dY 〈ζs cos θ〉 = J

(
Bu′c/2

)1/2
Φ4(λ,Pr);

∫ ∞
−∞
− dY 〈ζs sin θ〉 = 0.


(4.6)

Recall that the cos θ contribution from g1 and sin θ from g2 and g4 vanish due to
parity of these function (for details see C&S96).

† Of course, the full solution for any λ is continuous and continuous transition takes place in a
narrow transition layer with width λ1/2 (see C&S96, Appendix A).
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Note that, according to equation (4.2b), the interaction of the regular and the
singular components of a disturbance occurs throughout the entire CL thickness and,
as is apparent from (4.6), makes a local (dependent on the value of the amplitude
B only at a given point ξ) cos θ contribution to the MSC, unlike C&S95 where
such an interaction was ousted into external diffusive layers and made a non-local
(determined by the entire past evolution) sin θ contribution. It is this that determines
the cardinal differences of the evolution character in the nonlinear CL regime in these
two so closely related problems to be shown later in the text.

On substituting (4.6) into the right-hand sides of (2.10a,b) and separating dB/dξ
and dΘ/dξ, we obtain a system of nonlinear evolution equations

dB

dξ
= −2k2u′′′c

u′c
2

[
I2ΩB +

cJ

4k
(2Bu′c)

1/2Φ4(λ,Pr)

]
Φ1(λ)

∆(λ)
,

dΘ

dξ
=
Ω

c

{
1 +

2k2I0

∆(λ)

[
I2 +

cJ

2kΩ

(
u′c
2B

)1/2

Φ4(λ,Pr)

]}
,


(4.7)

∆(λ) ≡ I2
0 + c2

(
u′′′c /u

′
c
2
)2

Φ1(λ)Φ2(λ) .

Using the asymptotic expansions of Φi in the limit λ� 1 (e.g. C&S96) we obtain the
desired evolution equations in the quasi-steady nonlinear CL regime:

dB

dξ
= −η C

(1)

∆(0)

u′′′c
u′c

(
kI2Ω

(2Bu′c)
1/2

+
Pr− 1

4Pr

cC (4)

B
J

)
, (4.8a)

dΘ

dξ
=

(
1 +

2k2I0I2

∆(0)

)
Ω

c
+

Pr− 1

Pr

(
u′c
2B

)1/2
kI0C

(4)

∆(0)
J, (4.8b)

where ∆(0) = I2
0 + c2

(
u′′′c /u

′
c
2
)2

C (1)C (2), C (1) = −5.5151 . . . , C (2) = −2.5008 . . .,

C (4) = −1.9377 . . . .
In the subsequent analysis it is convenient to pass to ‘physical’ variables, and NEE

(4.8a) is conveniently written in brief form

dA

dx
= ν

(
d3

γL

A1/2
+ d4

Pr− 1

Pr

Ri

A

)
, d3 > 0, d4 > 0 . (4.9)

The first term on the right-hand side of (4.9) appears in all problems concerning
the evolution of unstable disturbances in the nonlinear CL regime and is the result
of a reduction of the linear growth rate γL, and the second term is caused by the
stratification influence (in the viscous CL regime this term turns into the nonlinear
term of NEE (3.4), see also C&S96).

We now determine the validity range of the evolution equations obtained. Quasi-
steady-state conditions (4.1) are satisfied if

max (γL/A
1/2,Ri/A)� 1 or A� max (Ri, γ2

L) ,

i.e. in the region which is dark shaded in figure 5. It is easy to see that for a not too
small stratification (Ri� ν2/3)), the gap

(νRi)2/5 < A < Ri, γ2
L < A (4.10)

(lightly shaded in figure 5) lies between the level at which the transition to the
nonlinear CL regime from the unsteady CL regime occurs and the validity range of
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Figure 5. Diagram of disturbance development in all possible CL regimes. Designations are the

same as in figure 2;
β

−− → – A ∼ ξβ . Curve 4 – A4 =
(
Ri/γL

)2
– bounds from below the region

where stratification is unimportant. Dark shading shows the region of a quasi-steady nonlinear
CL; the gap of an essentially unsteady evolution in the nonlinear CL regime is lightly shaded. The
absence of a simple analytic expression describing the disturbance dynamics in this gap is marked
by ?.

NEE (4.8). In this gap the development of disturbances in the nonlinear CL regime is
essentially unsteady. To understand what happens to the disturbance – will it transit
through this gap and reach the regime of quasi-steady evolution or not – one has to
have a simultaneous numerical solution of equations (2.9a–c) and (2.10a, b). This issue
is taken up in the next Section. It should be noted that in problems treated so far
no such situation has been encountered: unsteady processes underwent a reasonably
fast relaxation (e.g. G&H), and the disturbance could be thought of as passing from
the unsteady CL regime directly into the quasi-steady nonlinear CL regime (see the
Introduction in C&S95).

Before embarking on a numerical investigation of the evolution we shall try to
predict it using equations (4.9) and based on the fact that in order for the gap (4.10)
to be ‘surmounted’ it is necessary to have a growth of amplitude. Terms on the
right-hand side of (4.9) have the same order of magnitude when A = O

(
(Ri/γL)2

)
,

i.e. on curve 4 (see figure 5) which runs above the gap (4.10). Consider the part of the
dark shaded region which is adjacent to the gap. Here, in NEE (4.9) the main term is
the second (‘stratified’) term. Depending on the Prandlt number, two fundamentally
different situations are possible.

(i) When Pr < 1 the stratification contribution is negative, which corresponds to
a decrease of amplitude A. Consequently, when Pr < 1 a quasi-steady nonlinear CL
is evolutionarily unattainable: even if the disturbance manages to come closer to it
‘from below’, it will at once be forced out backward. Hence a growth of the amplitude
is bounded by the level A ∼ Ri, and one can speak of the stabilization of instability
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by nonlinear processes when Pr < 1 not only in the viscous CL regime (γL < ν1/3)
but also in a more extensive range of supercriticalities γL < Ri 1/2.

(ii) When Pr > 1 the right-hand side of (4.9) is positive, and the disturbance that
has come ‘from below’ increases further according to a power law

A ∼ (νRi x)1/2 (4.11)

up to the curve 4, A ∼ (Ri/γL)2, where the first (‘unstratified’) term on the right-hand
side of (4.9) becomes the main term, and the evolution law changes to a ‘classical’
one

A ∼ (νγL x)2/3 . (4.12)

This law occurs everywhere in a weakly nonlinear region (A < 1) above curves 3 and
4 in figure 5.

Note that in the case of a weaker stratification, Ri < ν2/3, the gap (4.10) disappears,
and the transition occurs virtually at once into the quasi-steady nonlinear CL regime;
this case was investigated earlier in paper C&S96.

As has already been pointed out earlier in this Section, the CL quasi-steady
condition means that unsteady processes are forced out to the CL periphery. The
evolution equations (4.8) do not take these processes into account. However, the
unsteadiness that was forced out to the ODL gives corrections to these equations, and
hence also to the evolution law described by them, of O

(
(ΓB/η)1/2

)
∼ O(lN/lODL),

and these corrections can be numerically not small and important, for example, when
comparing results of numerical calcualtions with the asymptotic solution. As done in
G&H, we have taken into consideration the unsteadiness in the ODL and obtained
more precise evolution equations. Their derivation and explicit form are given in the
Appendix.

5. Numerical results
5.1. Transformation of equations and numerical procedure

A numerical solution of the system of equations (2.8), (2.10) was performed for a
flow with the velocity profile u = c + tanh y which was also considered in G&H.
For it ωcr = c, k = u′c = 1, u′′′c = −2, I1 = 0, I2 = 2. In order to be able to make a
direct comparison of our calculations with those in G&H, we now pass to analogous
variables. We introduce

ξ̄ = 1
2
|Ω|ξ, Ỹ =

Y − Ω
c (|Ω|/2)

, C(ξ̄) =
2B

(cΩ/2)2
eiΘ(ξ̄),

ζ̃ =
ζ

cΩ2
, P̃ =

P

c|Ω|/2 , λ̄ =
η

(c|Ω|/2)3
, g =

Jc

4(η/Pr)2/3
,

 (5.1)

and choose the origin in X(≡ x − (c + ε1/2Ω)t) and ξ̄ such that when ξ̄ → −∞ the
disturbance is of the form

P̃ = Re
{
Π(Ỹ )eqξ̄+iX

}
, ζ̃ = Re

{
f(Ỹ )eqξ̄+iX

}
. (5.2)

Here q = π/(1 + iπc/2), and Π(Ỹ ) and f(Ỹ ) are the solutions of a linearized inner
problem:

Π(Ỹ ) = −λ̄−1/3Φ
(
λ̄−1/3(Ỹ − iq)

)
, (5.3)

f(Ỹ ) = (q/π)λ̄−1/3Φ
(
λ̄−1/3(Ỹ − iq)

)
+ gG

[(
λ̄/Pr

)−1/3
(Ỹ − iq); Pr

]
, (5.4)
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where

Φ(z) = i

∫ ∞
0

dt e−t
3/3−itz , G(z; η)=

∫ ∞
0

dt t e−itz

∫ 1

0

dv v3 exp
{
− 1

3
t3
[
η − (η − 1)v3

]}
. (5.5)

Omitting the tilde over P , ζ and Y and passing to Fourier harmonics

(ζ, P ) =
1

2

∞∑
n=−∞

(ζn, Pn)e
inX, (ζ−n, P−n) = (ζn, P n)

we obtain a system of equations for ζn(ξ̄, Y ), Pn(ξ̄, Y ) and the amplitude C(ξ̄):

∂ζn

∂ξ̄
+ inY ζn +

i

2

(
C
∂ζn+1

∂Y
− C ∂ζn−1

∂Y

)
− λ̄ ∂

2ζn

∂Y 2
= δn1

(
c

2

dC

dξ̄
+ iC

)
+ ing

(
λ̄

Pr

)2/3

Pn,

(5.6)

∂Pn

∂ξ̄
+ inY Pn +

i

2

(
C
∂Pn+1

∂Y
− C ∂Pn−1

∂Y

)
− λ̄

Pr

∂2Pn

∂Y 2
= −iCδn1 , (5.7)

i
dC

dξ̄
=

∫ ∞
−∞
− ζ1dY (5.8)

with initial conditions at ξ̄ → −∞

Pn = δn1 exp(qξ̄)Π(Y ), ζn = δn1 exp(qξ̄)f(Y ), C = exp(qξ̄) . (5.9)

Boundary conditions are imposed at Y = ±Ym, Ym � 1, by assigning corresponding
asymptotic values for Pn and ζn:

P0 =−|C|
2

Y 3
+O

(
Y −4

)
, P1 =−C

Y
+

i

Y 2

dC

dξ̄
+O

(
Y −3

)
, Pn=O

(
Y −(2n−1)

)
when n > 2;

(5.10)

ζ1 =− i

Y

(
c

2

dC

dξ̄
+iC− iCj

Y

)
+

1

Y 2

(
c

2

d2C

dξ̄2
+i

dC

dξ̄
− 2iCj

Y

)
+O

(
Y −3+jY −4

)
,

ζ0 =
c

4

|C|2
Y 2

+O
(
Y −3+jY −4

)
, ζn=O

(
Y −(2n−1)

)[
1+O

(
jY −1

)]
when n > 2,

 (5.11)

where j ≡ g(λ̄/Pr)2/3. We call attention to the fact that the expansion developed
above assumes j <

∼ Y ; therefore Ym must be chosen so that jY −1
m is of order unity or

less. This same remark applies to the equation for the amplitude (5.8) transformed in
view of a finite Ym:

dC

dξ̄

{
1 + 2c2 − 4

Ym
+

4

Y 2
m

− 2j

cY 2
m

[
3c2 + 1− 4

Y 2
m

− 4(1 + c2)

Ym

]}
= 2iC

[
−c+ j

(
1 + 2c2

Ym
− 2

Y 2
m

)
− 2j2

cY 2
m

(
1 + 2c2 − 2

Ym

)]
−iI10

[
1− 2

Ym
+ c2 − 2j

cY 2
m

(
1 + 2c2 − 2

Ym

)]
+i

c

Ym
(I11 − jJ10)− i

(
c

Ym

)2 (
I12 − 1

2
CI20 − 2jJ11

)
+ O

(
Y −3
m + jY −4

m

)
. (5.12)

Here Inl =
∫ Ym
−Ym ζnY

ldY , Jnl =
∫ Ym
−Ym PnY

ldY . Equation (5.12) generalizes equation
(4.10) from G&H for the case of a weakly stratified flow.
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For the numerical solution of equations (5.6), (5.7) and (5.12) with initial conditions
(5.9) and boundary conditions (5.10), (5.11) an algorithm described in G&H with the
following modifications was applied: (i) a grid non-uniform in Y † was used; (ii) as
the evolution variable ξ̄ increased, a choice of the step in ξ̄ was continuously carried
out automatically, so that a preset accuracy was achieved. The algorithm adopted was
tested, in particular by comparing results of our calculations for g = 0 (an unstratified
flow) with results reported in G&H for c = 1 and for different values of λ̄.

5.2. Results of calculations for Pr > 1

The analysis in §4 suggests that when Pr > 1, as the amplitude increases, the
development of a disturbance, sooner or later, reaches the quasi-steady nonlinear CL
regime. The evolution equations, describing this stage, in the variables (5.1) have the
form

d|C|
d(λ̄ξ̄)

= 2
3
a3/2
∞ |C|−1/2

(
1 + Q|C|−1/2

)
,

dΘ

dξ̄
≡ Θ ′

ξ̄
= Θ ′∞

(
1− Q

c2D
|C|−1/2

)
, (5.13)

where

a∞ =

(
3|C (1)|

2(1 + c2D)

)2/3

, Θ ′∞ = − 2cD

1 + c2D
, Q = g

∣∣C (4)
∣∣Pr− 1

2Pr

(
λ̄/Pr

)2/3

and D = C (1)C (2)/4 = 3.448 . . . . In these same variables more precise equations
(taking into account the contribution of ODLs, see the Appendix, equations (A15),
(A16)) for u = c+ tanh y have the form

d|C|
ds

=
2

3

a
3/2
∞

|C|1/2

{
1+

1

8π1/2

(
1+

π2c2

4

)
d2

ds2

∫ ∞
0

dx x−1/2|C(s− x)|2

+
Q

|C|1/2

[
1+ 1

6
(1+c2D)

(
a3
∞Pr

π

)1/2
d

ds

∫ ∞
0

dx x−1/2|C(s−x)|1/2
]}

, (5.14)

dΘ

dξ̄
= Θ ′∞

{
1 +

1

8π1/2

(
1− π2

4D

)
d2

ds2

∫ ∞
0

dx x−1/2|C(s−x)|2

− 1

c2D

Q

|C|1/2

[
1+ 1

6
(1+c2D)

(
a3
∞Pr

π

)1/2
d

ds

∫ ∞
0

dx x−1/2|C(s− x)|1/2
]}

, (5.15)

where s ≡ λ̄ξ̄. It is evident from (5.13), (5.14) and (5.15) that in this stage the behaviour
of |C(s)| and Θ ′

ξ̄
(s) is determined only by the parameter Q ∼ (Ri/γ2

L)
(
1− 1/Pr

)
. The

same parameter also determines the role of the stratification.
In the first series of calculations Pr = 2, c = 1 and g(λ̄/Pr)2/3 = 10, i.e. Q = const.

Figures 6 and 7 present the dependences of ln |C| and Θ′
ξ̄

on ln s for three values of

λ̄: λ̄ = 2; 10 and 250 (respectively, g = 10; 2× 51/3 and 0.4).
Dotted lines correspond to the solution of the asymptotic equations (5.14) and

(5.15) with the condition C(s) = 0 for s 6 0. The dashed line in figure 6 shows the
solution of an analogue of equation (5.14) in the unstratified case (G&H). One can

† More precisely, the coordinate Z was used instead of Y , Y (Z) = Y∗ sinh
(
Z/21/2Y∗

)
, where Y∗

roughly corresponds to a maximum size of the separatrix attained in a particular version of the

calculation (Y∗ ≈ 2|C|1/2max). To the grid uniform in Z there corresponds a grid in Y with the mesh
size increasing toward the periphery.
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Figure 6. Pr = 2. Scaled wave amplitude vs. (λ̄ξ̄) for three values of λ̄ at a constant Q:
g(λ̄/Pr)2/3 = 10. Dotted line shows the solution of the asymptotic equation (5.14); dashed line
corresponds to the two-term asymptotic expansion for an unstratified flow (from G&H).
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Figure 7. Phase change rate Θ ′
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vs. (λ̄ξ̄) for the same values of parameters as in figure 6. Dotted

line shows the asymptotic solution of (5.15).
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Figure 8. Scaled growth rate vs. ξ̄ for the same values of parameters as in figures 6 and 7.

see that the asymptotics of the numerical solutions is indeed the same for all λ̄ and is
in good agreement with the analytic solution of the asymptotic equations (5.14) and
(5.15).

As in the case of an unstratified flow a monotonic growth of the amplitude is
observed at a sufficiently large viscosity (large λ̄). At the same time there also is one
important difference: even at large λ̄ we cannot describe the entire time history of
development by means of a pair of evolution equations (like (5.14) and (5.15)) since
when g � 1 the regions of quasi-steadiness, i.e. the viscous CL (γL < ν1/3, A <
ν/Ri 1/2) and the quasi-steady nonlinear CL (A > max(Ri, γ2

L)), are separated by the
unsteady CL region and the gap (4.10) (see figure 5) where quasi-steadiness is violated.

At the chosen values of λ̄ the explosive stage of the disturbance growth in the
unsteady CL regime is rather poorly expressed: its presence can be seen only from
an increase of the growth rate |C|−1d|C|/dξ̄ at the beginning of the post-linear stage
of disturbance development (figure 8). Note that in a stratified flow the evolution has
a more violent character than in a homogeneous flow for the same values of λ̄, and
the stage of transition into the quasi-steady CL regime is more long-lasting.

These same regularities are also evident in the second series of calculations (figures
9 and 10) where Pr = 2 and g is constant (g = 10). The constancy of g means the
same position of the characteristic points and lines on the amplitude–supercriticality
diagram (figures 2 and 5) for all variants of the series: a decrease of the parameter
λ̄ is accompanied only by an increase of γL (the movement from left to right on the
abscissa). Dotted lines in figures 9 and 10 have the same meaning as in figures 6 and
7.

Figure 11 shows the streamwise evolution of the vorticity and density in the critical
layer for Pr = 2, g = 10 and λ̄ = 0.1. The positions of ξ̄ shown in figure 11 are
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Figure 9. Pr = 2. Scaled amplitude vs. (λ̄ξ̄) for several values of λ̄ at a constant g = 10. Dotted
lines show the corresponding solutions of (5.14).
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lines show corresponding solutions of (5.15).



Effect of slight stratification on nonlinear evolution of an unstable wave 219

12

6

0

–12

–6

12

6

0

–12

–6

12

6

0

–12

–6

12

6

0

–12

–6

12

6

0

–12

–6

12

6

0

–12

–6

12

6

0

–12

–6

12

6

0

–12

–6

12

6

0

–12

–6

12

6

0

–12

–6

0 3.14 6.28 9.43 12.57 15.71 18.85 0 3.14 6.28 9.43 12.57 15.71 18.85
XX

Y

Y

Y

Y

Y

Density Vorticity

60
40
20

000

60
40
20

12

8

4

0

–4

–8

12

8

4

0

–8

n = –3

n =1

n = 4

n = 20

n = 84

–4

Figure 11. Contours of constant vorticity and density on the plane (X,Y ) for λ̄ = 0.1, Pr = 2 and
g = 10 for several values of ξ̄. These positions are marked in figure 9 by the symbol ∇ .
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Figure 12. Vorticity and density profiles in the central cross-section of the cat’s eye X = π .

marked on the respective curve of figure 9 by the symbol ∇. More exactly, the isolines

−
(
Y − 2/c

)
+P (ξ̄, X, Y ) = const,

(
Y − 2/c

)2
+2Re

(
CeiX

)
−(4/c)ζ = const (5.16)

are shown, which represent O
(
ε1/2
)

density and the O(ε) vorticity in the critical
layer. The figures clearly show the formation of a plateau on the density profile
and of a smooth distribution of the vorticity inside the cat’s eye following a rather
violent transition stage (recall that the viscosity is relatively small here, λ̄ = 0.1). It is
interesting to note the appearance, at the transition stage, of regions near the cat’s
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Figure 13. Scaled amplitude vs. ξ̄ at Pr = 2/3, g = 10 for several λ̄ (Scenario I). The dashed line
shows the saturation level (5.17).

eye boundaries where the vorticity is significantly smaller than the initial minimum
value. Such an effect is impossible in a homogeneous flow, and it is caused entirely
by baroclinity. It has been observed also in numerous simulations of stratified shear
flows (e.g. Patnaik, Corcos & Sherman 1976; Staquet 1995). This evolutionary feature
is more readily illustrated in figure 12, showing profiles of the quantities involved in
the left-hand sides of (5.16) in the cross-section running through the cat’s eye centre.
One can also see clearly a density continuity and a baroclinic jump of the vorticity
on the cat’s eye boundary, in full conformity with theoretical analysis.

5.3. Results of calculations for Pr < 1

The analysis in §3 has shown that unstable disturbances that start in the viscous CL
regime (γL < ν1/3, large λ̄) attain saturation at the level (3.5) (Scenario I), while more
unstable disturbances (γL > ν1/3, small λ̄) ultimately reach the nonlinear CL regime.
In the latter case, as shown in §4, we have two possible variants of the subsequent
evolution.

With a not too large supercriticality (ν1/3 < γL < Ri 1/2), disturbances reach the
unsteady nonlinear CL regime (the gap (4.10)) and, as shown in §4, cannot go out of
it into the region of a quasi-steady nonlinear CL, because the nonlinear growth rate
in this region is negative. The evolution in this case (Scenario II) can be determined
numerically only .

If, however, γL > Ri 1/2, the role of the stratification is negligibly small, and the
disturbance from the unsteady CL regime reaches the quasi-steady nonlinear CL
regime in the same manner as it does in a homogeneous medium. In this case an
exponential growth of the amplitude following some relaxation is replaced by a
power-law growth according to a classical law A ∼ x2/3 (Scenario III).
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Figure 14. As figure 13 but for smaller values of λ̄ (Scenario II).

Thus, when Pr < 1 one must expect the presence of three fundamentally differ-
ent evolution scenarios alternating with increasing γL (or decreasing λ̄). Numerical
calculations in general confirm this.

The calculations were carried out for Pr = 2/3 and a fixed g = 10. Six variants
were considered: λ̄ = 5000; 1000; 100; 10; 1; 0.1.

As might be expected, three types of evolution scenarios are evident. Figure 13
presents the dependence of the amplitude |C| on ξ̄ for sufficiently large values of λ̄.
One can see that when λ̄ � 1 (λ̄ = 100; 1000; 5000) the disturbance does indeed
reach saturation in the viscous CL regime (Scenario I). Dashes show saturation levels
|C| = Csat that follow from equation (3.3). In the variables (5.1) this level is

C2
sat =

2Pr 2/3

a4(Pr)(Pr− 1)

λ̄

gc
(5.17)

(for Pr = 2/3, a4(Pr)(Pr− 1) ≈ 0.40). It is curious to note that the equilibrium state
is approached non-monotonically, which does not agree quite well with the Landau
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Figure 15. As figure 13 but for λ̄ = 0.1 (Scenario III).

equation (3.3) that predicts a monotonic approach of |C| to Csat from below. This
difference seems to be attributable to unsteady terms omitted when passing from
(3.1) to (3.3). A non-monotonicity of the same kind was discovered by Goldstein &
Leib (1989), Leib (1991) and Wu & Cowley (1995) by solving numerically an integro-
differential equation of the form (3.1) with a somewhat different kernel for arbitrary
values of the parameter α (coincident with λ̄ provided there is an appropriate scaling).

At smaller λ̄ (see figure 14) the evolution follows Scenario II: the disturbance enters
the unsteady nonlinear CL region, the growth of its amplitude is decelerated and then
changes to a decrease, and the disturbance returns to the unsteady CL regime where
it again begins to grow, etc. This results in something like quasi-periodic oscillations.
In any case it can be concluded that neither limitless growth of the amplitude occurs
here, as in Scenario I, nor transition into the quasi-steady nonlinear CL regime. The
rather early replacement of Scenario I by Scenario II with decreasing λ̄ is somewhat
surprising: it occurs at a relatively small supercriticality (relatively large viscosity),
λ̄ > 10, when, at first glance, Scenario I should still occur. This is caused by the same
unsteady terms (omitted when deriving (3.3)) which are likely to be insufficiently
small.

With a further decrease of λ̄, we arrive at Scenario III. Figure 15 shows the
dependence of ln |C| on ln(λ̄ξ̄) when λ̄ = 0.1.

We observe here, in accordance with the qualitative analysis, the attainment of the
asymptotic stage of power-law growth in the regime with a quasi-steady nonlinear
CL. On comparing figure 15 with the curve λ̄ = 0.1 in figure 9, one can see that for
such values of λ̄ the stratification is still able to decelerate the evolution compared
with the case Pr > 1, but it is no longer able to lead to a restriction of the disturbance
growth.

To conclude this Section, brief mention should be made of the procedure for
choosing computational parameters and of the reliability of results obtained.
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The size of the computing semi-interval in Y , i.e. the value of Ym, was taken to be
>
∼ (2–3)|C|3/4max, which roughly corresponds to the size of the ODL (in units of (5.1))
at the stage of a developed nonlinear CL. The step in Y was chosen so that at
least 5–10 steps were accomodated on a scale of the order of the cat’s eye boundary

thickness ∆Y ∼ λ̄1/2/|C|3/4max. The number of harmonics was varied from 11 to 36 and
increased with decreasing λ̄. The step in ξ̄, as has already been mentioned, was chosen
automatically. In doing so, the requirement for achieving a preset accuracy led – at
some streamwise distances – to a reduction of this step (by dividing it into two) right
up to values of ∆ξ̄ = 0.1× 2−7 ≈ 0.00078.

The computational reliability was monitored by the reproducibility of results with
a change of Ym, the magnitude of the step in Y , as well as the number of harmonics.
When Pr > 1, results of different calculations of the same variant (i.e. for fixed λ̄
and g) are reproduced with confidence right up to the streamwise distances which
are shown in the figures and for the presented values of λ̄ and g. For smaller
values of λ̄, λ̄ < 0.1 (and for not too small values of g), we were unable to achieve
a reliable computation with existing computer resources, hence appropriate results
are not presented. When Pr < 1 the situation is not so satisfactory. The results
presented in figures 14 (a) and 15 continue to be reproduced reasonably well with a
change of computational parameters. As far as figure 14 (b) is concerned, however,
its reproducibility is qualitative only. This result should probably be regarded only as
an indication that there is no unlimited growth of amplitude.

6. Discussion
The above analysis has shown that even a weak stratification can change drastically

the nonlinear dynamics of a shear flow instability; it revealed some factors responsible
for these changes. When embarking on this work, we were guided, of course, by the
experience of previous research (primarily by results reported in G&H, C&S95 and
derived by studying the nonlinear evolution in flows with a finite stratification,
Churilov & Shukhman 1987b, 1988), and based on this experience we tried to predict
expected results. It is instructive to consider which of those predictions were borne
out and which results obtained turned out to be somewhat surprising.

Stratification makes the neutral mode singular (and a weak stratification makes
it weakly singular); therefore, from general considerations (Churilov & Shukhman
1992) it follows that, with a not too weak stratification, there must be the explosive
growth stage of disturbances in the unsteady CL regime.

Experience in studying flows with finite stratification suggested that nonlinear
properties are determined largely by the competition between diffusion processes
of momentum (i.e. viscosity) and density: the nonlinearity will tend to decelerate
the development of an instability if the density diffuses faster than the momentum
(Pr < 1) and accelerate it in the opposite case (Pr > 1). This induced us to expect that
when Pr < 1 there must be instability saturation in the viscous CL regime (γL < ν1/3)
and explosive development with oscillations in the unsteady CL regime, and when
Pr > 1 explosive growth of the amplitude upon reaching the nonlinearity threshold
in each of these two CL regimes.

Finally, based on results of C&S95 it was possible to suppose that, with decreasing
stratification parameter (the Richardson number Ri) the fast evolution behaviour
would be forced out by a slow one, and in two directions at once (see figure 5). In
the first place, on the right-hand edge (γL near 1) of the amplitude–supercriticality
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diagram a (expanding to the left with a decrease of Ri) region of classical slow
evolution appears (see G&H) when the exponential growth of the amplitude, following
some relaxation of the vorticity distribution inside the CL when |A| ∼ γ2

L, becomes a
power-like one according to the law |A| ∝ x2/3. Secondly, the explosive growth of the
amplitude will be bounded from above by the decreasing (with decreasing Ri) level of
transition into the nonlinear CL regime. The explosive growth region will ultimately
be contracted into a point |A| ∼ ν2/3 ∼ γ2

L and disappear, and the only way in which
the stratification can manifest itself with a further decrease of Ri is a different (from
classical) exponent in the law of amplitude growth in some part of the nonlinear
CL region. This part will then also contract to a point, and the evolution scenario
will become exactly as in G&H. Also, it was fairly obvious that the transition to
the nonlinear CL regime means the transition to a slow growth of the amplitude in
accordance with a power law, as was the case in all flows studied so far.

The above study has confirmed almost all of these expectations (except for the
last one). We have detected both a stabilization in the viscous CL regime when
Pr < 1 (figure 13) and a stage of explosive growth in the unsteady CL regime,
monotonic when Pr > 1 and oscillatory when Pr < 1 (figures 3 and 4). In numerical
calcualtions the explosive stage manifests itself by an excess of the growth rate over
γL in the post-linear stage of development (figure 8). The explosive growth region
on the amplitude–supercriticality diagram (figure 5) is indeed bounded on the right
(γL < Ri 1/2) and from above (|A| < (νRi)2/5), becomes narrower with decreasing Ri
and contracts into a point when Ri ∼ ν2/3. The development of an instability at
smaller Richardson numbers was studied earlier (C&S96) and fits quite well into the
scheme described above.

It was somewhat surprising to find that, after the transition from the explosive
growth stage into the nonlinear CL regime, the flow dynamics inside the CL continues
to remain essentially unsteady within a rather broad gap (4.10) of amplitude variation
(in figure 5 it is lightly shaded), and only above this gap does the ‘habitual’ region
of quasi-steady nonlinear CL lie (in figure 5 it is shown by dark shading). The
asymptotic analysis has shown that when Pr > 1 the disturbance can enter this region
from below, and when Pr < 1 – it cannot. Studying the disturbance evolution inside
the gap (4.10), however, required using numerical methods.

The presence of the gap (4.10) has a most dramatic effect on the fate of disturbances
when Pr < 1. In order for them to grow further, the gap turns out to be an
unsurmountable obstacle, with the result that their amplitude performs oscillations
in a restricted range (|A| < Ri , figure 14). The range of supercriticalities where a
weakly nonlinear restriction of the growth of unstable disturbances occurs is thereby
expanding and includes not only the viscous CL region (γL < ν1/3) but also the
explosive growth region in the unsteady CL regime adjacent to it (ν1/3 < γL < Ri 1/2).

When Pr > 1 disturbances pass sucsessfully through the gap (4.10) and reach the
region of the quasi-steady nonlinear CL, so that the course of their evolution (figures
6 and 9) does not differ qualitatively from that described in C&S95.

The existence of the gap (4.10) is a totally new (not encountered earlier) element
of the weakly nonlinear evolution scenario, and we have spent much effort in trying
to ‘close’ this gap. Of course, a certain motivation in this case was our reluctance
to abandon the idea, confirmed by numerous examples, that in problems of the
development of a velocity shear-induced instability, the nonlinear CL is always quasi-
steady, and all existing unsteady processes relax sufficiently rapidly on the lower (in
amplitude) boundary of this regime. But such efforts were also dictated by a more
serious factor.
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The comparison of NEEs (3.9) and (4.9) shows their one-to-one correspondence:
(4.9) is the result of a term-by-term reduction of (3.9) at the transition into the
nonlinear CL regime. On the other hand, if (3.9) is compared with the NEE which
Churilov & Shukhman (1988, equation (5.1)) derived for the case of a finite stratifi-
cation (Ri ≈ 1/4), we did not detect such a correspondence: it differs greatly from
(3.9) by the presence of a competitive quintic nonlinear term (∼ A5). It is vital to
note that it is this term that ensures a sufficiently low threshold of nonlinearity
throughout the whole region of the unsteady CL (ν1/3 < γL < 1) and an increase of
the growth rate above this threshold, sufficiently fast for sustaining the explosive
evolution right to the validity range of weakly nonlinear theory (|A| = O(1)) and for
preventing the transition into the nonlinear CL regime. Indeed, without the quintic
term we would have qualitatively the same evolution pattern as NEE (3.9) provides:
the nonlinearity would be competitive only in some part of the unsteady CL region,
when ν1/3 < γL < ν1/4, and on the level |A| = O(ν3/8) the transition into the nonlinear
CL regime would occur.

It seemed that the weakly stratified flow problem must have an additional (to that
involved in (3.9)) nonlinearity which, in the unsteady CL regime, would be competitive
right up to γL = O(Ri 1/2) and would raise the level of transition to the nonlinear
CL regime to |A| = O(Ri), i.e. to the lower boundary of the quasi-steady nonlinear
CL region (see figure 5). A careful analysis showed that there is no other competitive
nonlinearity † (except for that involved in NEE (3.9)), and hence the gap (4.10) does
indeed exist.

The principal reason for its appearance lies in a stronger (compared with C&S95)
coupling between the ‘singular’ and the ‘regular’ components of the disturbance. In-
deed, by comparing equations (2.9) with corresponding equations (2.13) from C&S95,
it becomes apparent that while the dynamics of the singular component inside the
CL is described by identical equations (2.9a) and (2.13a), its coupling with the regular
component is fundamentally different, but it is the regular component that determines
in either case the contribution of the CL to the evolution equations.

In C&S95 this coupling is due solely to unsteady processes (see (2.13b) in C&S95),
which after the transition into the nonlinear CL regime are forced out rather quickly
to the periphery, into the ODLs, and thus coupling becomes significantly weaker. In
our problem, however, it is taking place throughout the CL thickness and is sensitive
to distribution gradients of the singular component (see (2.9b) and especially (2.11)).
Because of this, variations in the distribution inside the CL of the singular component
(density) cause much more significant (than in C&S95) changes in the distribution of
the regular component (vorticity) and, through it, in the dynamics of the amplitude,
which in turn has a back influence upon the development of the singular component
itself. We now consider qualitatively the mechanism for this feedback.

The transition to the nonlinear CL regime occurs when the amplitude increases
so that the unsteady scale becomes of the same order as the nonlinear scale and
subsequently smaller than it, i.e. ∣∣B−1dB/dξ

∣∣ <∼ B1/2 . (6.1)

† The problem involves several small parameters (γL, Ri, ν) and a full nonlinearity in the
evolution equation is representable as an expansion in terms of these parameters and powers of A.
The largest (in the domain of parameters considered) term out of the terms cubic in A is involved
in NEE (3.9). None of the remaining expansion terms can compete with it and with the linear term
(γLA) in the range of supercriticalities ν1/3 < γL < 1 below the formal boundary of the nonlinear
CL (i.e. when |A| < γ2

L).
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Physically, the transition means that liquid particles, trapped by the wave, now have
sufficient time to move inside the cat’s eyes and mix together. In our problem each
liquid particle (in the absence of dissipation) has its own value of density, while the
vorticity along the trajectory of a liquid particle (unlike the case of a homogeneous
medium) is not conserved because of baroclinicity. The mixing is known to be
due to non-isochronism of wave-trapped particles motion, i.e. the dissimilar periods
of motion in neighbouring orbits. Non-isochronism is especially strong near the
separatrix (i.e. the cat’s eye boundary), and it is there that refinement of scales of the
density distribution starts and proceeds most intensively – while moving in orbits,
liquid particles with very differing density values find themselves close together.

There are two processes capable of decelerating the refinement of scales: the
diffusion smooths out the density distribution, while a variation in amplitude leads
to the most jagged layer near the separatrix either finding itself deep inside the cat’s
eye (if the amplitude has increased) where non-isochronism is much weaker, or (if
the amplitude has decreased) being are forced out of the cat’s eye, into the region of
transit particles. We will now proceed to show that in our problem the refinement of
scales comes to a halt just because of a variation in amplitude and on a scale larger
than the scale at which diffusion comes into play.

Difusive smoothing that leads to the formation of a quasi-steady nonlinear CL
starts when the dissipation term in the operator L̃ (see (2.8) and below) becomes of
the same order as the other terms, i.e. at the scale of refinement L ∼ LD = η/B. At
larger scales, there is still no smoothing, and the nonlinear CL cannot become quasi-
steady. As is evident from (2.11), the function G (i.e. the part of the vorticity which
influences the amplitude evolution) increases rapidly with decreasing refinement scale
of the density L:

G ∼ ηJP

L2B
∼ ηJ

L2B1/2
,

because, according to (4.4), P = O
(
B1/2

)
(this relationship is true not only in the

quasi-steady limit but also in the general case). Corresponding contributions to the
right-hand sides of MSCs (2.10) increase together with G. It is easy to obtain an
estimate of the amplitude variation rate:

1

B

dB

dξ
∼ GL

B
∼ ηJ

LB3/2
∼ LD

L

J

B1/2
.

Under the condition B < J we find that∣∣∣∣ 1

B

dB

dξ

∣∣∣∣ > LD

L
B1/2 or lt >

LD

L
lN.

Since in the nonlinear CL regime the inequality (6.1) is satisfied, i.e. lN > lt, we
conclude that, as long as B < J (i.e. |A| < Ri), L remains larger than LD . This does
indeed mean that the scale of refinement cannot become so small that a smoothing
of the density distribution occurs, which opens the way to the quasi-steady regime of
the nonlinear CL, and the disturbance evolution in the nonlinear CL regime will be
unsteady right up to the amplitudes A ∼ Ri†.

A relationship between the refinement of the density distribution and the vorticity

† Since at Pr < 1 this level cannot be reached, these sharp (but insufficiently sharp) gradients
cannot be smoothed away by diffusive processes. Recently Staquet (1995) has shown by numerical
simulations that in the regions of the most sharp gradients which are localized near the cat’s eyes
boundaries (baroclinic layers in author’s terminology) secondary instabilities develop and turbulence
arises.
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oscillations is clearly seen in figures 11 and 12 showing the appearance, in the course
of the evolution, of regions where the vorticity takes large negative values, while the
vorticity of an undisturbed flow (the top plot in figure 12) is everywhere non-negative
– in a homogeneous flow such an effect is impossible. This relationship manifests
itself even in the quasi-steady case (|A| � Ri) in the form of a baroclinic jump of
the vorticity on the cat’s eye boundary, i.e. just where the density gradient changes
abruptly (see C&S96, Appendix A).

It should be noted that an analogy between the density distribution in a weakly
stratified flow and the vorticity in a homogeneous flow was first established by
Haberman (1973). On its basis he considered a steady nonlinear CL in a weakly
stratified medium and showed that the density, which is constant inside the cat’s eyes,
in accordance with Grimshaw’s (1969) results, must be continuous on their boundaries
in the limit of a vanishingly small dissipation and must have quite a definite gradient
jump on the cat’s eye boundaries and quite a definite jump across the CL. In this
study we have established that always when Pr > 1, and when Pr < 1 in the case of
a sufficiently large supercriticality (γL > Ri 1/2), as a result of instability development,
a flow structure inside the CL forms, which coincides not only qualitatively but also
quantitatively with that predicted by Haberman. Based on this we provided one of
the possible answers to the “question... of determining the evolution mechanisms for
generation of such finite-amplitude modes” which was posed by Haberman (1973).

We wish to note in conclusion that the ‘dissimilarity’ of the evolution equations
(3.9) for weakly stratified flow and the NEE for the flow with finite stratification
(Churilov & Shukhman 1988) raises the question of the continuity of the transition
from a finite stratification to its absence through a weak stratification. Because the
only case of a finite stratification (Ri ≈ 1/4) that has been considered so far is the
limiting one in certain sense (there is no instability at a larger Ri), to answer this
question requires a theory for nonlinear instability development of a shear flow when
0 < Ri < 1/4.
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Appendix. Corrections for unsteadiness to the nonlinear evolution equation
in the quasi-steady nonlinear CL regime

Unsteady terms involved in equations (2.9a,c) and (2.11) inside the quasi-steady
nonlinear CL (Y − Yc = O(1)) are small compared not only with nonlinear but also
with dissipation terms and become of the same order as the latter only within the outer
diffusive layers (ODL)

(
Y − Yc = O

(
(η/Γ )1/2

))
, which connect the CL with outer

flow regions. Through solutions in them matching of the inner (in the CL) solution
to the inner asymptotics (2.5) of the outer solution is accomplished. To render these
facts clearer, it is convenient to introduce the parameter µ � 1 (Γ = O(µ)) and the
variables t = µτ = µξ/c, s = (µ/η)1/2(Y − Yc), as well as, in addition, to separate the
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sine (F) and cosine (H) parts of ζh generated, respectively, by terms with sin θ and
cos θ on the right-hand side of (2.9c). Equations (2.9a,c) and (2.11) in the ODL take
the form:

ku′csPθ = −µ
η

2kB sin θPs +

(
µ3

η

)1/2(
1

Pr
Pss − Pt

)
+

(
µ

η

)1/2

2kB sin θ + · · · , (A 1)

ku′csGθ = −µ
η

2kB sin θGs +

(
µ3

η

)1/2

(Gss − Gt)−
µ2

η

Pr− 1

Pr
Ju′cPsss + · · · , (A 2)

ku′csFθ=−µ
η

2kB sin θFs+

(
µ3

η

)1/2

(Fss−Ft)−
(
µ

η

)1/2
2u′′′c
u′c

(Ω−Θ̇)B sin θ+ · · · , (A 3)

ku′csHθ = −µ
η

2kB sin θHs +

(
µ3

η

)1/2

(Hss −Ht)−
(
µ3

η

)1/2
2u′′′c
u′c

dB

dt
cos θ+ · · · , (A 4)

where ζh = F + H, Θ̇ = Θτ†. The solution inside the CL is defined, with the
unsteadiness neglected, by equations (4.2)–(4.4). We start the analysis with unstratified
contributions F and H . We construct the solution inside the CL as an expansion of
the form

F = F0 +
(
µ/η

)1/2
F1 + · · · , H = H0 + · · · ,

while in the ODL it is more convenient to expand in terms of the harmonics θ:

F = F (0) + · · · , H = H (0) +H
(1)
S sin θ +H

(1)
C cos θ + · · · .

According to (4.4),

F0 =
u′′′c (Ω − Θ̇)

k
(
2Bu′c

3
)1/2

Bg1(λ; z, θ) .

When |z| → ∞, as shown by Haberman (1972), g1 = σC (1)/2 + O
(
cos θ/z

)
, σ =

sign(z), so that

F0 =
σu′′′c C

(1)

2k
(
2Bu′c

3
)1/2

(Ω − Θ̇)B + O

(
cos θ

Y

)
.

The first term is independent of θ and represents the well-known vorticity jump
across the CL, because of which the inner solution does not match to the asymptotic
expansion (2.5) of the outer solution straightforwardly. Appropriate matching is done
through the zeroth harmonic F (0) of the solution in the ODL and is similar to that
performed in the C&S95. At O(1) function F (0) for s > 0 and s < 0 (the + and −
signs, respectively) is determined from the solution of the boundary-value problem

F (0)
ss

± − F (0)
t

±
= 0,

F (0)±(0, t) = ± u′′′c C
(1)

2k
(
2Bu′c

3
)1/2

(Ω − Θ̇)B; F (0)± → 0 as s→ ±∞.

 (A 5)

This solution

F (0)±(s, t) =
u′′′c C

(1)

8k
(
πu′c

3
)1/2

s

∫ ∞
0

dt1 t
−3/2
1 [2B(t− t1)]1/2

[
Ω − Θ̇(t− t1)

]
exp

(
− s2

4t1

)
† As is evident from (4.8b), even in the quasi-steady limit Θτ = O(1) (but Θττ = O(µ) !); therefore,

using Θt = µ−1Θτ may provide a misleading perception of the order of a corresponding term.
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when s→ ±0 has the asymptotic expansion

F (0)±(s, t) = ±u
′′′
c C

(1)

4k

[
2B(t)

u′c
3

]1/2 (
Ω − Θ̇(t)

)
− u′′′c C

(1)

4k
(
πu′c

3
)1/2

s
d

dt

∫ ∞
0

dt1 t
−1/2
1 [2B(t− t1)]1/2

(
Ω − Θ̇(t− t1)

)
,

and to match with it the contribution F1 at O
(
(µ/η)1/2

)
of the inner solution must

have following the asymptotic behaviour when |z| → ∞:

F1 = 2D1(t)z, D1 = −u
′′′
c C

(1)

8ku′c
2

[
2B(t)

π

]1/2
d

dt

∫ ∞
0

dt1 t
−1/2
1 [2B(t− t1)]1/2

(
Ω−Θ̇(t−t1)

)
.

(A 6)
It is easy to see that F1 satisfies the equation MF1 = 0, the solution of which
with the required asymptotic behaviour is F1 = D1g̃1, g̃1 = g1 + 2z. If we write
F0 = D0(t)(g̃1 − 2z), one can then see that F1 and subsequent iterations obtained in
the same way give only a renormalization of the coefficient at g̃1.

In this manner, with an accuracy up to O
(
(µ/η)1/2

)
,∫ ∞

−∞
− dY 〈F sin θ〉 =

ηu′′′c C
(1)

k2
(
8Bu′c

3
)1/2

{
Ω−Θ̇ − C (1)

4

(
µ

πηu′c

)1/2

× d

dt

∫ ∞
0

dt1 t
−1/2
1 [2B(t−t1)]1/2

(
Ω−Θ̇(t−t1)

)}
,

∫ ∞
−∞
− dY 〈F cos θ〉 = 0.

 (A 7)

It can be shown that the cos θ contribution appears not in the next order, O(µ/η),
but much later (see C&S95).

The right-hand side of equation (4.6a) with a correction for unsteadiness has
thereby been calculated.

Further, in accordance with (4.4), the cosine term inside the CL in the first
approximation is

H0 =
µu′′′c Bt

k
(
2Bu′c

3
)1/2

g2(λ; z, θ) .

When

|z| → ∞ g2 = −1

λ
ln |z|+ g20 −

2 sin θ

z
− cos θ

λz2
+ O

(
z−3
)
,

so that

H0 = −µ
η

u′′′c

u′c
2

[
dB2

dt
ln |s|+ 2(µη)1/2

k

dB

dt

sin θ

s
+

4µ

η

B2

u′c

dB

dt

cos θ

s2
+ · · ·

]
+H00(t) . (A 8)

A constant H00 (and, together with it, also g20) is determined from matching to the
outer solution.

As in the case of the sine contribution F , θ-independent terms of the asymptotic
representation (A8) must be reduced to zero in the ODL. Consider equation (A4).
The main contribution to the fundamental harmonic is of O

(
µ3/2/η1/2

)
. It is obtained

by a direct integration:

H
(1)
S = −

(
µ3

η

)1/2
2u′′′c
ku′c

2

dB

dt

1

s
(A 9)

and is matched both to the second term in (A8) and to (2.5). The first term on the
right-hand side of (A4) plays the role of a ‘generator of harmonics’. Substitution of
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(A9) into it gives contributions to the zeroth and second harmonics at O(µ/η) and
O
(
µ5/2/η3/2

)
, respectively.

The contribution to the zeroth harmonic is described by(
∂2

∂s2
− ∂

∂t

)
H (0) =

µ

η

u′′′c

u′c
2

dB2

dt

1

s2
, H (0) → 0 as s→ ±∞ . (A 10)

It is evident that when s → 0 the asymptotic behaviour of its solution is singular
and contains the same logarithm as the right-hand side of (A8). At the same time
the solution (A10) is defined so far up to an arbitrary solution of the homogeneous
equation tending to zero when |s| → ∞. The constraint

∂

∂s

(
H (0) +

µ

η

u′′′c

u′c
2

dB2

dt
ln |s|

)
→ 0 as s→ 0 (A 11)

is to be added as the missing boundary condition. Indeed, it is easy to see that
H (0)(−s) = H (0)(s) and if this limit is non-zero, then the inner (s → 0) asymptotic
expansions of solutions in ODLs will contain the term ∼ |s| which is impossible to
match to the solution inside the CL (see C&S95, p. 70). The solution of (A10), (A11)
has the form

H (0) =
µ

η

u′′′c

u′c
2

∂U

∂s
, U(s, t) =

s

2

d

dt

∫ ∞
0

dt1
t1

[B(t− t1)]2 Φ

(
1, 3

2
;− s2

4t1

)
, (A 12)

where Φ(a, b; x) is Kummer’s confluent hypergeometric function. When s→ 0

H (0)(s, t)=−µ
η

u′′′c

u′c
2

[
dB2

dt

(
ln |s|+ 1

2
CE
)
− 1

2

d2

dt2

∫ ∞
0

dt1 [B(t− t1)]2 ln t1 + O
(
s2 ln s

)]
,

i.e.

H00(t) =
µ

2η

u′′′c

u′c
2

[
d2

dt2

∫ ∞
0

dt1 [B(t− t1)]2 ln t1 − CE
]
.

Here CE = 0.577216 . . . is Euler’s constant.
On substituting (A12) into (A4) and integrating over θ, we obtain, using (A10), the

contribution to the fundamental harmonic at O
(
µ2/η2

)
,

H
(1)
C =

(
µ

η

)2
2Bu′′′c
u′c

3

(
1

s

∂U

∂t
− 1

s2
dB2

dt

)
, (A 13)

which, judging from its structure, gives a correction for unsteadiness to the right-hand
side of the (4.6b).

The last term on the right-hand side of (A13) is a continuation into the ODL of the
last term in square brackets in (A8), i.e. its contribution to (4.6b) is already included.
The first term on the right-hand side of (A13), however, should be matched to the
not yet calculated iteration of the solution inside the CL having the same order,
O
(
µ2/η2

)
. The integral over the inner region appearing on the left in (4.6b) consists

of the integral over CL and the integrals over two ODLs sandwiching it. Since the
order of magnitude of the integrand in the CL and ODLs is the same and the ODL
scale far exceeds the CL scale, the main contribution to the integral will be made by
ODLs. Thus, the correction for unsteadiness to (4.6b) due to the first term on the
right-hand side of (A13) is

δ

(∫ ∞
−∞
− dY 〈H cos θ〉

)
=

(
πµ

η

)3/2
u′′′c

2u′c
3
B

d2

dt2

∫ ∞
0

dt1 t
−1/2
1 [B(t− t1)]2 +O

(
µ2

η2

)
, (A 14)

whereas
∫

dY 〈H sin θ〉 = 0.
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Finally, the stratification-driven contribution is determined from the combined
solution of equations (A1), (A2) in ODLs and (2.9a), (2.11) in the CL. The calculation
of P is the same as that of F . As a result, we find that taking into account the
corrections for unsteadiness reduces to a renormalization:

P =−
(
B

2u′c

)1/2
{
g1

(
λ

Pr
; z, θ

)
−C

(1)

4

(
µPr

πηu′c

)1/2

g̃1

(
λ

Pr
; z, θ

)
d

dt

∫ ∞
0

dt1t
−1/2
1 [2B(t−t1)]1/2

}
and, consequently,

G = 1
2
Ju′cg̃4(λ,Pr; z, θ)

{
1− C (1)

4

(
µPr

πηu′c

)1/2
d

dt

∫ ∞
0

dt1 t
−1/2
1 [2B(t− t1)]1/2

}
,

∫ ∞
−∞
− dY 〈G cos θ〉 =

Pr−1

2Pr
J
(
2Bu′c

)1/2
C (4)

{
1−C

(1)

4

(
µPr

πηu′c

)1/2

× d

dt

∫ ∞
0

dt1 t
−1/2
1 [2B(t−t1)]1/2

}
,

∫ ∞
−∞
− dY 〈G sin θ〉 = 0 .

(Here g̃4 = g4 − ∂g1

(
λ/Pr; z, θ

)
/∂z).

All desired corrections are thereby calculated. Taking them into account we obtain
for the nonlinear evolution equations (4.8a,b) the more precise forms

dB

dξ
= − ηC (1)

∆(0)u′c

{
ku′′′c I2(

2Bu′c
)1/2

Ω +
∆(∞)

4

(
cu′c

2πη3B

)1/2
d2

dξ2

∫ ∞
0

dξ1 ξ
−1/2
1 [B(ξ − ξ1)]

2

+
Pr− 1

4Pr

cu′′′c C
(4)

B
J

[
1− C (1)

4

(
cPr

πηu′c

)1/2
d

dξ

∫ ∞
0

dξ1 ξ
−1/2
1 [2B(ξ − ξ1)]

1/2

]}
, (A 15)

dΘ

dξ
=

(
1 +

2k2I0I2

∆(0)

)
Ω

c
−
(
c3

πη3

)1/2
I0ku

′′′
c

2∆(0)u′c
3

(
C (1)C (2)−π2

) d2

dξ2

∫ ∞
0

dξ1 ξ
−1/2
1 [B(ξ−ξ1)]

2

+
Pr− 1

Pr

(
u′c
2B

)1/2
kI0

∆(0)
C (4)J

[
1− C (1)

4

(
cPr

πηu′c

)1/2
d

dξ

∫ ∞
0

dξ1 ξ
−1/2
1 [2B(ξ − ξ1)]

1/2

]
.

(A 16)

REFERENCES

Churilov, S. M. & Shukhman, I. G. 1987a The nonlinear development of disturbances in a zonal
shear flow. Geophys. Astrophys. Fluid Dyn. 38, 145–175.

Churilov, S. M. & Shukhman, I. G. 1987b Nonlinear stability of a stratified shear flow: a viscous
critical layer. J. Fluid Mech. 180, 1–20.

Churilov, S. M. & Shukhman, I. G. 1988 Nonlinear stability of a stratified shear flow in the regime
with an unsteady critical layer. J. Fluid Mech. 194, 187–216.

Churilov, S. M. & Shukhman, I. G. 1992 Critical layer and nonlinear evolution of disturbances
in weakly supercritical shear layer. XVIIIth Intl Congress of Theor. and Appl. Mech., Haifa,
Israel. Abstracts, pp. 39–40; Preprint of Inst. Solar-Terrestrial Physics 4-93, Irkutsk. Also: Izv.
RAN Fiz. Atmos. i Okeana 1995, 31 (4), 557–569 (in Russian).

Churilov, S. M. & Shukhman, I. G. 1994 Nonlinear spatial evolution of helical disturbances to an
axial jet. J. Fluid. Mech. 281, 371–402.

Churilov, S. M. & Shukhman, I. G. 1995 Three-dimensional disturbances to a mixing layer in the
nonlinear critical-layer regime. J. Fluid Mech. 291, 57–81 (referred to herein as C&S95).



Effect of slight stratification on nonlinear evolution of an unstable wave 233

Churilov, S. M. & Shukhman, I. G. 1996 The nonlinear critical layer resulting from the spatial or
temporal evolution of weakly unstable disturbances in shear flows. J. Fluid Mech. 318, 189–221
(referred to herein as C&S96).

Drazin, P. G. 1958 The stability of a shear layer in an unbounded geterogeneous inviscid fluid.
J. Fluid Mech. 4, 214–224.

Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.

Goldstein, M. E. & Choi, S.-W. 1989 Nonlinear evolution of interacting oblique waves on two-
dimensional shear layers. J. Fluid Mech. 207, 97–120, and Corrigendum J. Fluid Mech. 216,
659–663.

Goldstein, M. E. & Hultgren, L. S. 1988 Nonlinear spatial evolution of an externally excited
instability wave in a free shear layer. J. Fluid Mech. 197, 295–330, and Corrigendum J. Fluid
Mech. 281, 403–404 (referred to herein as G&H).

Goldstein, M. E. & Leib, S. J. 1989 Nonlinear evolution of oblique waves on compressible shear
layer. J. Fluid Mech. 207, 73–96.

Grimshaw, R. 1969 On steady recirculating flows. J. Fluid Mech. 39, 695–703.

Haberman, R. 1972 Critical layers in parallel flows. Stud. Appl. Maths 51, 139–161.

Haberman, R. 1973 Wave-induced distortion of slightly stratified shear flow: a nonlinear critical-
layer effect. J. Fluid Mech. 58, 727–735.

Hickernell, F. J. 1984 Time-dependent critical layers in shear flows on the beta-plane. J. Fluid
Mech. 142, 431–449.

Huerre, P. & Scott, J. F. 1980 Effects of critical layer structure on the nonlinear evolution of
waves in free shear layers. Proc. R. Soc. Lond. A 371, 509–524.

Hultgren, L. S. 1992 Nonlinear spatial equilibration of an externally excited instability wave in a
free shear layer. J. Fluid Mech. 236, 635–664.

Kelly, R. E. & Maslowe, S. A. 1970 The nonlinear critical layer in a slightly stratified shear flow.
Stud. Appl. Maths 49, 301–326.

Leib, S. J. 1991 Nonlinear evolution of subsonic and supersonic disturbances on a compressible
mixing layer. J. Fluid Mech. 224, 551–578.

Patnaik, P. C., Corcos, F. S. & Sherman, G. M. 1976 A numerical simulation of Kelvin-Helmholtz
waves of finite amplitude. J. Fluid Mech. 73, 215–240.

Shukhman, I. G. 1989 Nonlinear stability of a weakly supercritical mixing layer in a rotating fluid.
J. Fluid Mech. 200, 425–450.

Shukhman, I. G. 1991 Nonlinear evolution of spiral density waves generated by the instability of
the shear layer in a rotating compressible fluid. J. Fluid Mech. 233, 587–612.

Staquet, C. 1995 Two-dimensional secondary instabilities in a strongly stratified shear layer. J. Fluid
Mech. 296, 73–126.

Tritton, D. J. & Davies, P.A. 1981 Instabilities in geophysical hydrodynamics. In Hydrodynamic
Instabilities and the Transition to Turbulence (ed. H. L. Swinney & J. P. Gollub). Springer.

Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.

Wu, X. 1993a Nonlinear temporal-spatial modulation of near-planar Rayleigh waves in shear flows:
formation of streamwise vortices. J. Fluid Mech. 256, 685–719.

Wu, X. 1993b On critical layer and diffusion layer nonlinearity in the three-dimensional stage of
boundary-layer transition. Proc. R. Soc. Lond. A 443, 95–106.

Wu, X & Cowley, S. J. 1995 On the nonlinear evolution of instability modes in unsteady shear
layers: the Stokes layer as a paradigm. Q. J. Mech. Appl. Maths. 48, 159–188.

Wu, X., Lee, S. S. & Cowley, S. J. 1993 On the weakly nonlinear three-dimensional instability of
shear layers to pairs of oblique waves: the Stokes layer as a paradigm. J. Fluid Mech. 253,
681–721.


